
© Martin Hunter, July 2006 1

Abstract Thought in Object Oriented
Software Development

What does abstraction mean, how can it be applied in Object Oriented

development to improve software systems?

© Martin Hunter, July 2006

1 Executive Summary

Abstraction is a core concept in Object Oriented (OO) development. This
paper discusses the nature of abstraction, and introduces and compares
some of the key mechanisms that OO technologies incorporate to support it.
We conclude with some useful rules to help you “think abstract” and
incorporate abstract principles into your software design and development
processes.

2 The Concept of Abstraction

According to Wikipedia “abstraction is the process of reducing the information
content of a concept, typically in order to retain only information which
relevant for a particular purpose”. In short, then, abstraction is the
simplification of a concept in a specific direction. Abstraction removes given
specific concept details to leave a more general concept in which that detail is
ambiguous.

Consider the statement that “I saw many different cars driving on the road
today”. The identification of a specific object as being a car and the “driving
on” relationship that such objects have with roads are both abstractions of
those objects.

© Martin Hunter, July 2006 2

3 Abstraction in Object Orientation

In computer science, the term abstraction has a specific connotation: It is a
mechanism by which details are factored out of broader concepts to allow us
to focus in on specific concepts. Abstraction is a central concept of the OO
software design paradigm in which specific types of objects can be
generalized (abstracted) to less specific types of objects.

3.1 Abstraction through Inheritance

This logic is embedded in the OO principle of inheritance, in which one type
(class) is a specialization of (inherits from or extends) another type (class). In
OO inheritance, the generalized type in the relationship is usually referred to
as the super-class and the specialized type the sub-class. The following UML
class diagram illustrates the relationship, in which the solid-head arrow
specifies that super generalizes sub (or, inversely, that sub is a specialization
of super):

cd Inheritance

Super Sub

Figure 1: Class Inheritance

In OO, abstraction morphs two broader concepts of control abstraction and
data abstraction. Control abstraction relates to the operation of an object from
a functional viewpoint, whilst data abstraction relates to the information about
the object or that the object holds. As such, when a sub class inherits from a
super class in OO, both the methods (operational aspects) and the data
(information attributes) of the super class are inherited by the sub class:

cd Car

Car

colour: string

+ Drive() : void

FordMondeo

+ Drive() : void
+ AcceptFordMechanic() : void

Figure 2: Specialisation of data and functionality

The above diagram illustrates a scenario in which the sub class “Ford
Mondeo” inherits all of the methods and data from super class “Car” and

© Martin Hunter, July 2006 3

supplements this with it’s own operations and data. In other words, a Car is a
generalization, an abstraction, of a Ford Mondeo.

Abstract Classes

In OO, the term abstract class has a specific meaning: An abstract class is
one which cannot, in itself, be instantiated. Objects can not be constructed
from an abstract class. The purpose of an abstract class is, therefore, to allow
the abstraction of higher level concepts away from “real” classes to afford an
appropriate logical grouping of “real” classes and to facilitate their inheritance
of concept-specific methodological and data sets.

Referring back to our previous example of the “Ford Mondeo” and “Car”
classes, we can assert that a Ford Mondeo can be instantiated, because Ford
Mondeo type objects are real objects. We cannot, however, instantiate a Car
per se, because there is simply no such thing as a “Car” type object in real
life. In this way, we can assert that Car is an abstract super type of Ford
Mondeo.

This relationship would be represented in UML as follows. Note that the name
of the Car class and the Drive() methods have been italicized to indicate that
they are abstract:

cd Car

Car

colour: string

+ Drive() : void

FordMondeo

+ Drive() : void
+ AcceptFordMechanic() : void

Figure 3: Abstract Classes

Interfaces

In OO, interfaces are very similar to abstract classes, except that an interface
cannot contain any implementation detail where an abstract class can.
Interfaces, therefore, define only the operational aspects of an abstract type:
Interfaces can contain methods definitions, but not the implementation of
those methods or any data about the type.

Many people find it helpful to think of an interface type as contract that an
implementing class (a sub class that inherits from the interface) needs to
adhere to. This manner of thinking is useful because interfaces enforce a
requirement for classes that inherit from them to implement a given set of
operations. In this way, implementing an interface can be seen as a
contractual obligation for a class to offer a certain set of functionality.

In general, a class that inherits from an interface is said to be a realization of
that interface. This terminology positions interfaces squarely as a functional
abstraction of classes: The class is something that makes the interface “real”.

© Martin Hunter, July 2006 4

cd Interface

«interface»
Drive

+ Start() : void
+ Stop() : void

Car

colour: string

+ Drive() : void
+ Start() : void
+ Stop() : void

«realize»

Figure 4: Interfaces

The above diagram illustrates the UML syntax for the realization of an
interface by a class. The Car class implements the Drive interface, an entirely
functional abstraction of Car that incorporates operations relating to driving.

3.2 Abstraction through Composition

Inheritance is one way in which abstractions can be defined in OO. Another
way is composition. Composition relates to the combining of several objects to
form another object. Unlike inheritance, abstraction through composition is not
about leaving information out to simplify things. It is about breaking larger
things up into smaller bits, each having a simpler and more focused purpose
and use.

To understand composition, let look at an example. A Car object might be
composed of many other objects such as Wheels, Engines, Doors, Windows
and so on. Each of the objects that the Car is composed of are independent
objects in their own right: They can be removed from the Car and still exist.
The following UML class diagram illustrates, where the composition
relationship between objects is denoted by a white diamond:

cd Car Composition

Car

colour: string

+ Drive() : void
+ Start() : void
+ Stop() : void

FordMondeo

+ Drive() : void
+ Start() : void
+ AcceptFordMechanic() : void
+ Stop() : void

«interface»
Driv e

+ Start() : void
+ Stop() : void

Wheel Door Window

«real ize»

Figure 5: Shared aggregation

© Martin Hunter, July 2006 5

This kind of composition is called a shared (or weak) aggregation. The Car
type is an aggregate of other types (such as Wheel), and each of those other
types can exist outside of the Car. In other words, they can be shared with
other things that might be composed of them (an instance of Wheel, for
instance, might be removed from a Car and attached instead to a Wheel
Barrow, though clearly the Wheel cannot be attached to both
simultaneously!). Shared aggregations are commonly identified by a “has-a”
relationship between objects: A Car has a Wheel (or probably more like four
Wheels, actually).

Composite (or strong) aggregation relates to situations where an object is
composed of objects that cannot exist outside the context of that object. For
instance, a Car might also have a Registration Number, Year of Manufacture
and so on. These objects are Car-object specific, and cannot exist outside the
Car: One couldn’t remove the Year of Manufacture object from a Car and
attach it to something else. Composite aggregations are commonly identified
by a “contains a” relationship between objects, and are represented in UML
by a black diamond:

cd Composite Aggregation

Car

colour: string

+ Drive() : void
+ Start() : void
+ Stop() : void

YearOfManufacture

Figure 6: Composite aggregation

3.3 Comparing Abstraction through Inheritance and C omposition

Varied problem contexts often call for equally varied solutions; one size does
not fit all. This is certainly true with the problem of identifying whether to use
composition or inheritance in OO developments.

The Gang of Four suggest that composition should always be favoured over
inheritance. This is largely because composition promotes the independence
of classes. Composition based designs involve autonomous units of
functionality which can easily be decomposed, recomposed and passed
around. This promotes reuse .

Inheritance, on the other hand, promotes dependence between classes.
Inheritance yields tight relationships between super and sub types, thereby
making it more difficult (or impossible) to untangle relationships. Perversely,
inheritance binds different classes together and reduces the available scope
for reuse.

© Martin Hunter, July 2006 6

4 The Abstract Thought Process

As stated earlier, abstraction is a process of concept simplification. Whether
by inheritance of composition, abstraction in OO development is good
because it facilitates the separation of concerns and thus promotes the
autonomy of types in your system.

Looking to our earlier examples, imagine what a system without the Car class
would be like. How would you know that a Ford Mondeo and a VW Polo were
both types of Car? How would you be able to stipulate that both had to
implement the Drive interface? How would you be able to pass a Ford
Mondeo or a VW Polo to a Road class and not have to implement logic in the
Road class that tells it to treat them the same way? Clearly the Car class is an
important abstraction for what would otherwise be a much more complex
system to develop and use.

Abstraction, then, is an important ingredient to OO systems. But how do we
go about the process of abstraction? What rules can we cite that will help us
develop systems with appropriate levels of abstraction amongst types?

Spotting opportunities for abstraction in software design is a skill. As you
become more experienced, you are likely to become more proficient at
building systems that incorporate appropriate levels of abstraction, in the right
ways and in the right places. In general, I would encourage you to “think
abstract” when you design and develop software. The following rules have
been assembled to help you along the way:

1. Consider the purpose of things

All components of a well developed software system have a purpose and a
design, whether those things are documented, understood or otherwise.
When you’re designing an OO system, take time to consider the purpose of
the classes and components you are designing. Would it be logical to abstract
different bits of functionality and data out into other types? Are there any not-
so-obvious abstractions that can be made which would improve flexibility and
extensibility of the design significantly?

2. Don’t be lazy

Whilst it’s tempting to use inheritance as a means of cloning useful code from
other classes, it’s not intended for this purpose. If you find yourself doing this,
then consider whether composition might help. Can the functionality you want
to inherit be abstracted logically into an independent class which can then be
invoked by other classes?

3. Think ahead

When you think of abstraction, consider what might happen in future. Would it
be useful to abstract now to future proof my design? Is it likely that it will help

© Martin Hunter, July 2006 7

in future? Don’t be swayed by developers who believe future proofing is a
costly exercise with little pay-off. In my experience, future proofing your
design is an excellent idea because, more often than not, the cost of
abstraction now is insignificant in comparison to the need to retro-fit
abstraction once a significant code base is established. Remember, if in
doubt, abstract!

4. Don’t be afraid to break convention

Just because you’ve seen it done one way a hundred times before doesn’t
mean to say it’s the best way out there. If you think abstraction will help you, it
probably will. Use abstraction to abbreviate the design of third party classes
and libraries if necessary to help separate concerns and decouple code
bases.

